
Electrical Energy Storage Roadmap

Updated by the Advanced Propulsion Centre in collaboration with and on behalf of the Automotive Council

Executive summary – *Electrical Energy Storage*

- The 2013 roadmap largely focused on progressing cathode chemistries, predicting a shift in early 2020s to more advanced (mainly lithium-based) chemistries.
- **2017 roadmap has applied a wider battery system perspective** and considers manufacturing and life cycle challenges.

.

.

- **2017 roadmap has been built using a targets-based approach,** informed by consensus amongst a wide range of industry and academic experts. Key targets are cost, energy and power density.
- Roadmap shows that 2025 targets can be met using evolution of current technology, but limited room for improvement beyond then.
- Innovation is needed at cell, module and pack level in order to step from the currently dominant lithium ion technology towards much higher performance lithium and non-lithium approaches post 2025, including novel cell and pack formats.
- A key risk is the current absence of a sustainable high volume solution for end of life batteries.

Update process: The Electrical Energy Storage Roadmap was updated via a structured consensus-building process involving 57 experts

ADVANCED PROPULSIC CENTRE UK

- A public workshop was held at the Advanced Propulsion Centre hub on the 10th January 2017
- The process was co-ordinated by the Advanced Propulsion Centre on behalf of Automotive Council
- The Advanced Propulsion Centre Electrical Energy Storage Spoke, supported by an expert Steering Group, helped to shape the roadmap before and after the workshop

Electrical Energy Storage Steering Group and Workshop Attendees

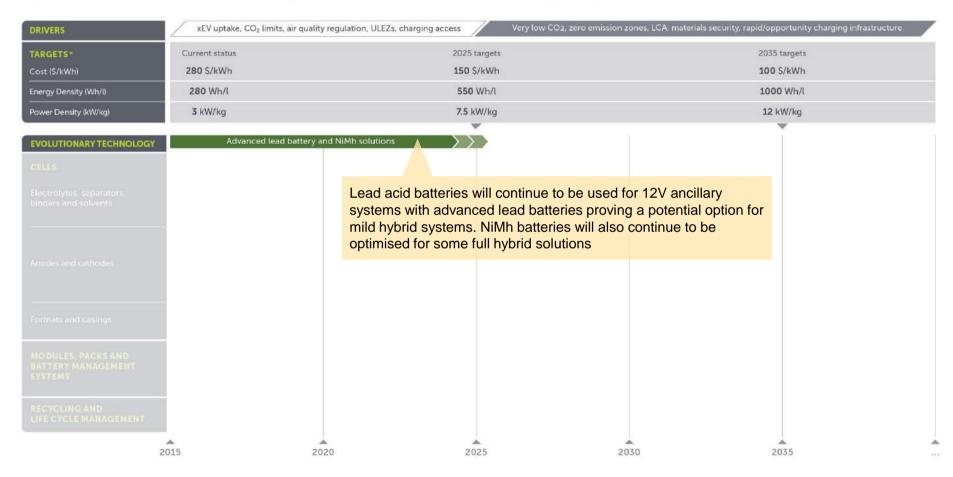
Technical targets: Mass market adoption of ultra low emission vehicles drives challenging cost and performance targets for future automotive battery systems

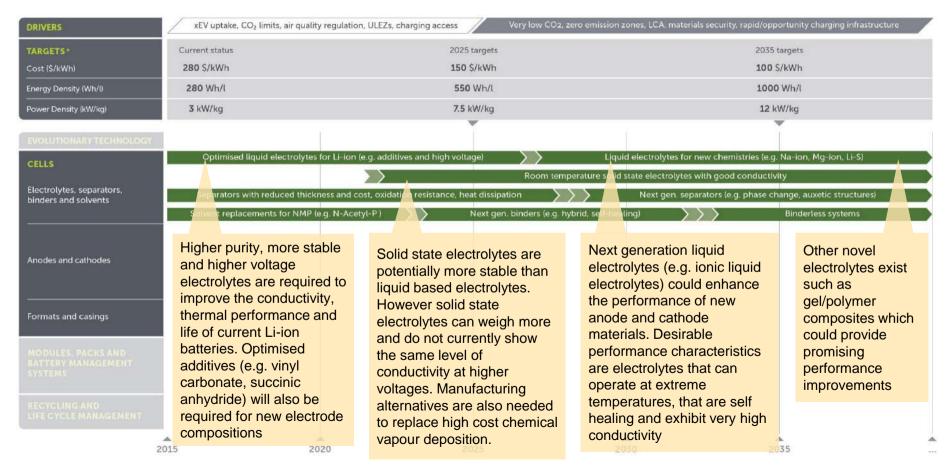
Drivers of change

- CO2 and air quality objectives challenge the universal application of ICE powertrains
- Electrification features in product plans of almost every OEM across all sectors
- On board electrical energy storage features in all xEV formats and is vital to BEV and PHEV in particular
- Despite progress, existing electrical energy storage solutions do not fare well against fuels for energy density or cost, impeding application in mass markets
- Characteristics such as **lifetime and recyclability** require improvement to meet mainstream automotive demands
- In response to these challenges, **ambitious long term targets** have been set to drive innovation; these targets cannot be attained using traditional lithium ion technologies.
- Cost, power and energy density targets should be read independently from one another, different OEMs will prioritise different targets based on their product requirement

Pack Targets	Energy- led ¹	Power- led ¹	2017	2025	2035
Cost (\$/kWh) ²	х		280	150	100
Energy Density (Wh/l)	х		280	550	1000
Power Density (kW/kg)		x	3	7.5	12
Pack Life (Years)	х	x	8	10	15
Recyclability (%)	х	x	10 -> 50	75	95
Cell Targets	Energy- led ¹	Power- led ¹	2017	2025	2035
Cost (\$/kWh) ²					
	х		130	80	50
Energy Density (Wh/l)	x		130 750	80 1000	50 1400
0, ,					

1 – Energy-led applications typified by BEV, power-led by PHEV or bus

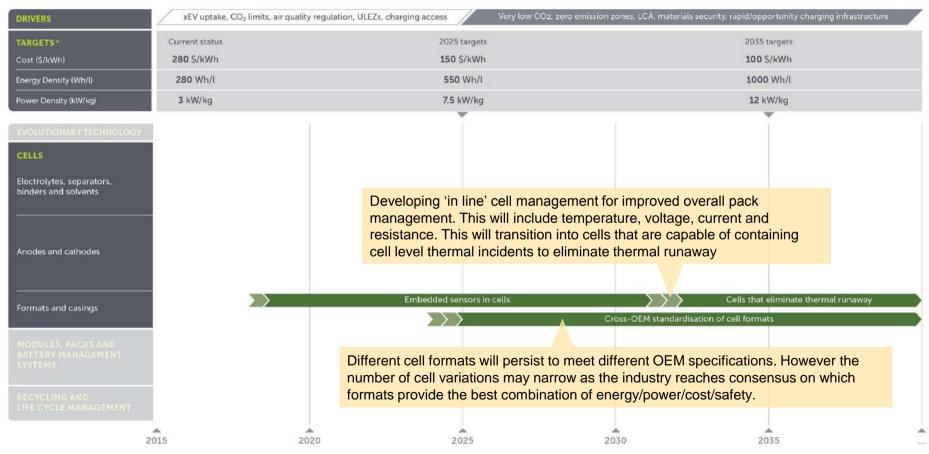

- 2 Cost targets relate to EV passenger car volume production
- 3 Temperature range: bottom end is limit of charge acceptance, top end where de-rating required


Technology categories: Parallel innovations in cells, modules, packs and 2nd life will be required to reach long term targets that existing battery technology cannot reach

ARGETS*	Current status	2025 targets		2035 targets
ost (\$/kWh)	280 \$/kWh	150 \$/kWh		100 S/kWh
nergy Density (Wh/l)	280 Wh/l	550 Wh/l		1000 Wh/l
ower Density (kW/kg)	3 kW/kg	7.5 kW/kg		12 kW/kg
VOLUTIONARY TECHNOLOGY		vailable battery technology that petter suit hybrid applications		
lectrolytes, separators, inders and solvents	structure is	and electrode key to performance provements.		
nodes and cathodes	-			
ormats and casings		agement and pack ctated by physical form		
MODULES, PACKS AND NATTERY MANAGEMENT SYSTEMS	OEM choice cost at a pa	e is based on performance and ick level		
RECYCLING AND		M includes managing batteries after 1 st in nintended consequences in the future.	life	
	A	2020 2025	<u> </u>	2035

Evolutionary technology: Existing battery technology such as advanced lead acid and nickel metal hydride will continue to evolve for lower cost and lower voltage applications

Cells: Advancements in electrolytes will be needed to improve existing lithium ion chemistries with new electrolyte concepts required for next generation chemistries


Cells: Separators, binders & solvents need to evolve to support lithium ion, leading to bigger steps into new chemistries

DRIVERS	xEV uptake, CO ₂ limits, air quali	ty regulation, ULEZs, charging ac	cess / Very low CO2, zero em	ission zones, LCA, materials security, rapid/opport	unity charging infrastructure
TARGETS*	Current status	2025 targets		2035 targets	
Cost (\$/kWh)	280 \$/kWh		150 \$/kWh	100 S/k	Wh
Energy Density (Wh/l)	280 Wh/l		550 Wh/l	1000 W	/h/l
Power Density (kW/kg)	3 kW/kg		7.5 kW/kg	12 kW/	kg
EVOLUTIONARY TECHNOLOGY	Optimised liquid electrolyte	s for Li-ion (e.g. additives and hi	gh voltage)	Liquid electrolytes for new chemistries (e.g. Na	a-ion, Mg-ion, Li-S)
CELLS		\rightarrow	Room temperatur	e solid state electrolytes with good conductivity	
Electrolytes, separators, binders and solvents	Separators with reduced thick	ness and cost, oxidation resista	nce, heat dissipation \longrightarrow	Next gen. separators (e.g. phase chan	ge, auxetic structures)
	Solvent replacements for NMP	(e.g. N-Acetyl-P)	Next gen. binders (e.g. hybrid, s	elf-healing)	linderless systems
Anodes and cathodes Formats and casings MODULES, PACKS AND BATTERY MANAGEMENT SYSTEMS RECYCLING AND	Eliminating the solvent N-Methyl-2- pyrrolidone (NMP) will reduce manufacturing costs and improve safety due to its toxicity and flammability. Potential substitutes are N-Acetyl-P and	As Ah of cells increase more thermally robust separators will be needed to reduce the likelihood of internal propagation	Advanced binders that demonstrate improved adhesion, better ionic conductivity, improved thermal stability and do not require burdensome manufacturing environments will be	Next generation separators need to be optimised with new battery chemistries (e.g. Li-S). There is also the potential to develop multi- functional separators with auxetic structures, advanced thermal management (phase change materials) and fire	Binderless systems will increase energy/power density through higher % of active material in cells and reduce manufacturing costs.
	water.		required.	resistant materials.	
	2015 2	020	2025	2030 2035	

Cells: Anode & cathode materials and structure improvements are fundamental to the development of *lithium ion and new chemistries*

DRIVERS	xEV uptake, CO ₂ limits, air qu	uality regulation, ULEZs, charging access // Very low Co	02, zero emissior	zones, LCA, materials security, rapid/op	portunity charging infrastructure
TARGETS*	Current status	Current status 2025 targets		2035 targets	
Cost (\$/kWh)	280 \$/kWh	150 \$/kWh		100 S/kWh	
Energy Density (Wh/l)	280 Wh/l	550 Wh/l		100	00 Wh/l
Power Density (kW/kg)	3 kW/kg	7.5 kW/kg		12	kW/kg
EVOLUTIONARY TECHNOLOGY CELLS Electrolytes, separators, binders and solvents	materials (e.g. silico effective hard carbo higher charge rates expansion and degr	ent anodes including: adding new on) alongside graphite, introducing cost on and anodes capable of accepting . Challenges include thermal radation of the anode during lithiation. materials and structures (e.g. Silicon, LTO, hard carbon)	Next gen, ar	New anode materials and concepts (e.g. lithium m carbon nanotubes, conv offer radically higher en compared to silicon and	netal anodes, graphene version anodes) that ergy/power density d graphite.
			Cathode	materials for new chemistries (e.g. Na-i	ion, Mg-ion, Li-S)
Formats and casings MODULES, PACKS AND BATTERY MANAGEMENT SYSTEMS RECYCLING AND LIFE CYCLE MANAGEMENT	energy/power densit through optimising the cathode structure ar high energy. Challer	ium based cathodes will continue. Better ty and voltage levels can be delivered he chemistry (transition metal content), nd synthesis of materials for high power / nges include thermal stability, rising costs ly of the raw materials.	,	Next generation cathode recyclable, achieve great density (e.g. Li-S, metal cathodes) and achieve lion). There will be a req cost, high energy and his solutions.	ater energy/power air, multi-valent lower costs (e.g. Na- uirement for lower
	2015	2020 2025	2	2030 2	2035

Cells: Cell formats and casings impact performance and thermal stability and need to evolve to support existing and new chemistries

Packs, modules and battery management systems: Packs can integrate all of the developments in cells, modules and battery management systems to deliver higher power/energy, safety and efficiency

DRIVERS	xEV uptake, CO ₂ limits, air quality regulati	on, ULEZs, charging access Very low CO2,	zero emission zones, LCA, materials security, rap	id/opportunity charging infrastructure	
TARGETS*	Current status 2025 targets			2035 targets	
Cost (\$/kWh)	280 \$/kWh	150 \$/kWh		100 S/kWh	
Energy Density (Wh/l)	280 Wh/l	550 Wh/l		1000 Wh/l	
Power Density (kW/kg)	3 kW/kg	7.5 kW/kg		12 kW/kg	
EVOLUTIONARY TECHNOLOGY CELLS Electrolytes, separators, binders and solvents Anodes and cathodes	As volumes increase, there will be the need for cost-effective solutions for existing platforms and new platforms that will be developed to cater for the inclusion of battery packs. Improving pack densities will also be critical in the short term.	Packs will need to be developed with higher power charging, for hybrid battery/lithium ion supercaps and the potential for mixed cell types. This requires more complex BMS systems to manage power/energy requirement and cooling.	New cell-module-pack concepts could emerge in order to reduce weight and volume in a safe system with more robust interconnects. Pack densities of >65% will be desirable to reduce mass overheads and increase energy/power density.	Novel cooling methods could potentially be employed such as using phase change materials to store the heat	
MODULES, PACKS AND BATTERY MANAGEMENT SYSTEMS		and manf. Mixed cell packs (high eighter sold and sold monitoring and life prediction trategies (e.g. integrated with vehicle cooling)	Distributed BMS enablin	New cell-module-pack concepts ng individual cell monitoring ement (e.g. phase change materials)	

Thermal management of a battery is critical to maintain performance, stop degradation and prevent thermal runaway. Challenges relate not only to temperature management of packs but the temperature differentiation between cells. Improvements in existing BMS will provide better state of charge & health info to better manage battery life and performance. BMS's will evolve from sensing to prediction of performance enabled by to distributed BMS's to carry out cell level monitoring to maximise use of active material

Recycling and life cycle management: Battery packs need to be designed with 2nd life and end-of-life in view with recycling processes requiring industrial scale up

DRIVERS	xEV uptake, CO ₂ limits, air quality reg		zero emission zones, LCA, materials security, rapid/opportunity charging infrastructur
TARGETS*	Current status	2025 targets 2035 targets	
Cost (\$/kWh)	280 \$/kWh	150 \$/kWh	100 S/kWh
Energy Density (Wh/l)	280 Wh/l	550 Wh/l	1000 Wh/l
Power Density (kW/kg)	3 kW/kg	7.5 kW/kg	12 kW/kg
EVOLUTIONARY TECHNOLOGY CELLS			
	life use in mind, will enab Manufacturers need impr	oved access to state of health mmon standard of data collection	
		recycling proces	vclability, developing efficient extraction and sees should be developed now ready for by mid 2020s. Development in this area is
BATTERY MANAGEMENT SYSTEMS	Pack designs that extend 1st life and	enable 2nd life	be be better bette
RECYCLING AND LIFE CYCLE MANAGEMENT	Processes for end-of-life recove	ry of cell material/electrode	Industrial scale up of high efficiency recycling processes

TECHNOLOGY ROADMAP 2017: ELECTRICAL ENERGY STORAGE

Roadmap developed by the Automotive Council and the Advanced Propulsion Centre

DRIVERS	xEV uptake, CO ₂ limits, air quality	y regulation, ULEZs, charging access Very low	CO2, zero emission zones, LCA, materials security, rapid/opportunity charging infrastructure	e
TARGETS*	Current status	2025 targets	2035 targets	
Cost (\$/kWh)	280 \$/kWh	150 \$/kWh	100 S/kWh	
Energy Density (Wh/I)	280 Wh/l	550 Wh/l	1000 Wh/l	
Power Density (kW/kg)	3 kW/kg	7.5 kW/kg	12 kW/kg	
EVOLUTIONARY TECHNOLOGY	Advanced lead battery a	nd NiMh solutions		
CELLS	Optimised liquid electrolytes	for Li-ion (e.g. additives and high voltage)	Liquid electrolytes for new chemistries (e.g. Na-ion, Mg-ion, Li-S)	
CELLS		Roo	m temperature solid state electrolytes with good conductivity	
Electrolytes, separators, binders and solvents	Separators with reduced thick	ness and cost, oxidation resistance, heat dissipation	Next gen. separators (e.g. phase change, auxetic structures)	
	Solvent replacements for NMP (e.g. N-Acetyl-P) 🔰 👌 Next gen. binders	(e.g. hybrid, self-healing)	
	Optimised Li-ion anode mat	erials and structures (e.g. Silicon, LTO, hard carbon)		
Anodes and cathodes			Next gen. anodes (e.g. transition metal oxides, metallic anodes and novel additives	5)
Anoues and califordes	Optimised Li-ion cathode n	naterials and structures (e.g. LFP, NMC, NCA, LMO)		
		\rightarrow	Cathode materials for new chemistries (e.g. Na-ion, Mg-ion, Li-S)	
Formats and casings		Embedded sensors in cells	Cells that eliminate thermal runaway	
, sinis and shorings		\rightarrow	Cross-OEM standardisation of cell formats	
MODULES, PACKS AND	Advanced pack designs for perfo	rmance and manf. Mixed cell packs (high energy and power) >>> New cell-module-pack concepts	
BATTERY MANAGEMENT SYSTEMS	Smart and connected BMS enablin	ng accurate SOC and SOH monitoring and life prediction	Distributed BMS enabling individual cell monitoring	
	Advanced thermal manag	gement strategies (e.g. integrated with vehicle cooling)	Passive thermal management (e.g. phase change materials)	
RECYCLING AND	Pack designs that extend 1st life	and enable 2nd life 🛛 🔪 🔪	Deployment of 2nd life batteries with flexible applicability	
LIFE CYCLE MANAGEMENT	Processes for end-of-life re-	covery of cell material/electrode	Industrial scale up of high efficiency recycling processes	
2	2015 20	20 2025	2030 2035	

1 chevron = some uncertainty around timing of mass market adoption or phase out 2 chevrons = considerable uncertainty around timing of mass market adoption or phase out

Glossary: Explanation of acronyms and terms not described in the roadmap due to space constraints

- BMS (Battery management system) A BMS monitors and manages the health of the battery and measures items such as: voltage, temperature, current, state of health, state of charge and depth of discharge.
- LCA (Life cycle analysis) Identifying the total environmental impact of a given product.
- LTO, LFP, NMC, NCA, LMO These are all examples of common lithium ion chemistries used in automotive applications. LTO is an example of a high power chemistry whereas the remaining four are typically used in applications requiring higher energy density.
- NiMh (Nickel metal hydride) Nickel metal hydride is a battery technology used in early hybrid vehicles such as the Toyota Prius and Honda Insight
- NMP (N-Methyl Pyrrolidone) NMP is an expensive solvent material that's needed for the production of battery cells but it is not contained in the final device. NMP also emits flammable vapours and is highly toxic.
- **SOC (State of charge)** State of charge (SOC) is the equivalent of a fuel gauge for the battery pack. The units of SOC are commonly expressed as percentage points (0% = empty; 100% = full).
- SOH (State of health) State of health (SOH) is an indication of how healthy a battery pack, module or cell is compared to its ideal conditions. SOH does not correspond to a particular physical quality as there is no consensus in the automotive industry on how SOH should be determined. However designers of a battery management system may use any of the following parameters highlighted in the BMS bullet point.
- V2X (Vehicle-to-X) Vehicle-to-X refers to an intelligent transport system where all vehicles and infrastructure systems are interconnected with each other.

